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The dissipative dynamics of a two-level system coupled to a thermal bath and driven by an
external stochastic field is studied. Within an approach similar to the noninteracting-blip approxi-
mation, an integro-differential kinetic equation for the difference of the level populations averaged
with respect to the bath is derived. An ezact averaging of this kinetic equation is performed for
the case of a dichotomous external force. The resulting equation is used to examine the long-range
electron tunneling driven by external telegraph noise.
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I. INTRODUCTION

The two-level system (TLS) is of profound importance
as the simplest fundamental model for the study of ther-
mal relaxation and quantum tunneling phenomena in a
number of physical and chemical systems [e.g., electron
transfer reactions [1], proton tunneling [2,3], macroscopic
quantum coherence in Josephson solid-state devices, su-
perconducting quantum interference devices (SQUID’s)
(4,5], to mention a few]. To include the relaxation process
(dissipation) one has to bring the TLS in contact with an
environment. Usually the environment is modeled by a
thermal bath of a large set of harmonic oscillators. The
oscillators stay in equilibrium and are coupled linearly to
the TLS. Using such a description of the environment,
the dissipative TLS is mapped on the well-known spin-
boson model [6]. This model has been extensively stud-
ied by many authors and in different aspects (see [6], and
references therein).

However, there exist various systems where the de-
scription of the environment within a harmonic approx-
imation is not quite correct. Such a situation arises,
for example, in proteins, where the transfer of electrons
between different sites may be influenced not only by
(quasi) phonons but also by large-amplitude local exci-
tations [7,8] (e.g., flipping of tyrosine rings or the rotation
of surface residues [8]). These large-amplitude motions
cannot be handled within the standard way of applying
a harmonic approximation. Nevertheless, one can model
such motions by means of a discrete stochastic process.
Therefore one treats the stochastic process as an exter-
nal stochastic field in the framework of time-dependent
but harmonic theory. The dichotomous Markovian pro-
cess (DMP, random telegraph signal) [9-11] is the sim-
plest example of a relevant stochastic process. Using the
DMP one can simulate, for example, the hopping of a
relevant molecular group or ion between two equivalent
positions. Besides, it may be treated as a truly external
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noise arising from an external dichotomous driving field.
In contrast to the equilibrium noise produced by a har-
monic (Gaussian) thermal bath, such a noise should be
considered as a nonequilibrium one. The importance of
the dichotomous model for the driving force is also con-
nected with the possibility of its exact treatment. It is
one of the motivations for our study.

In the following, we examine the effects of a dichoto-
mous driving field on the dynamics of a dissipative two-
level system. In Sec. IT the general problem is formulated
and we derive the kinetic equation in an approximation
similar to the noninteracting-blip (NIB) approximation
of the spin-boson model. The exact averaging of these
equations over the dichotomous fluctuations of the en-
ergy bias is performed in Sec. III. Different extremes will
be discussed and an exact expression for the average rate
of incoherent relaxation will be presented. In Sec. IV
we illustrate the elaborated theory in dealing with the
dichotomically driven nonadiabatic electron transfer. Fi-
nally, the results are summarized in Sec. V and our con-
clusions are drawn.

II. MODEL AND THEORY

The model which we would like to investigate here is
described by the Hamiltonian

H(t) = Ho(t) + Hint + Hr. (1)
The first term,
Ho(t) = E1(t)|1)(1] + E2(2)[2)(2] + V(|1)(2] + [2)(1]),
(2)

describes the two states, |1) and |2), which are coupled
by the intersite matrix element V. The time dependence
of the state energies FE;(t) and F3(t) in Eq. (2) results
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from time-dependent regular as well as stochastic exter-
nal fields. The introduction of stochastic fields into the
Hamiltonian of the dynamic system is well known from
the Haken-Strobl-Reineker (HSR) model [12,13] which
has been applied, e.g., to the excitation energy trans-
fer in molecular systems [14,15]. In all these approaches
the interaction with the thermal bath is described phe-
nomenologically by a stochastic modulation of the site
energies. Here, we include the system-bath interaction
in a microscopic manner according to the second term in

Eq. (1),
Hine = 3 F(1)(1] — [2)2]) . ®)

It introduces the fluctuations of the energy bias, (t) =
E;(t) — Ex(t), caused by the thermal bath (TB). Here,

F =3 ra(b] +) (4)
A

is the bath-dependent operator of the generalized force
which controls the energy bias fluctuations. k) denotes
the coupling constant, and b, b} are the annihilation
and creation operators of the Ath state of the TB, respec-
tively. The last term in Eq. (1) denotes the Hamiltonian
of the TB formed by a set of independent harmonic os-
cillators with the (quasi) continuous spectrum {w,},

Hr = hwa(biba + 1). (5)
A

It becomes simply obvious that Egs. (1)—(5) are equiv-
alent (despite an unimportant constant term) to the
well-known spin-boson Hamiltonian [6] (generalized to
the case of a time-dependent energy bias). To prove
this statement, one has to replace the operators |n)(m|
(n,m = 1,2) by quasispin 1/2 operators (¢, = |1)(1| —
[2)(2| and 6, = |1)(2| + |2)(1]) and the boson operators
bx, b, by the momentum and position operators (px and
q»). However, the form (1)—(5) is more convenient for our
goals, and hence it is utilized here. Using the well-known
canonical displaced-oscillator transformation [16,17]

U = exp[3R(1)(1] - 2)¢2), (6)

R= ; %(Bi — By), ()

where, e.g., the new annihilation operator reads By =
UtbrU, one can represent the total Hamiltonian (1) in
the basis of dressed states, |fi) = Uf|n), as

)
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H(t) =U'H(t)U
= E1(t)|I)(I| + E2(2)]2)(2]

+ ) Awa(BIBa + 3) + Vao| 1) (3| + Vaa|2)(d].
A

(8)

Here Vi, = V,; = V exp(R) is the operator of the dressed
intersite coupling; the trivial constant energy term is
omitted. In the transformed Hamiltonian (8), the sum
of the first two terms can be considered as the Hamilto-
nian of the dressed TLS, Hy(t), and the two last terms
represent the coupling between the dressed TLS and the
TB of the displaced oscillators [the third term in Eq.
(8)]. Let us assume for simplicity that the dressed inter-
site coupling V32 becomes negligible after the averaging
with respect to the TB,

i = Vesp (& [ L) eohlhe/thor) )

T w?
— 0. (9)

Here, the bath spectral function J(w) = 2rA=23%,
k26(w — wy) has been introduced [6], and the brackets
( )1 denote the average over the thermal bath done with
the equilibrium bath density matrix. The condition (9)
is fulfilled if the spectral function behaves in the low-
frequency range as J(w) ~ w? with 8 < 2. For example,
Eq. (9) is valid in the important case of the Ohmic TB
with 8 = 1. Otherwise, the two last terms in Eq. (8),
averaged over the TB, should be included in the Hamil-
tonian of the dressed TLS. Such an incorporation would
complicate essentially the problem, and, for this reason,
the case B > 2 is not considered here.

Now, our nearest goal is to obtain the kinetic equation
for the bath averaged difference, o,(t) = v11(t) — v22(t),
of the state populations v,,(t) = Sp[p(t)nn] (n = 1,2).
Here p(t) is the reduced density matrix of the dressed
TLS and 4,, = |f)(f| is the corresponding population
operator [18]. With this goal in mind, we consider the
case of a weak intersite coupling V. In this case, the two
last terms in Eq. (8) can be treated as perturbation in the
lowest Born approximation. Then, the relevant kinetic
equation can be reduced directly from the general kinetic
equations for the state populations and coherences of a
dissipative quantum system in an external field [19,17,20]
utilizing the nonequilibrium density-matrix method [21].
As an alternative, one can apply the master equation of
Argyres and Kelley [22] obtained in the framework of the
projection-operator technique. Proceeding in this latter
way [23], we write down the master equation in the basis
of the operators 4,.,, = |7){n|:

%ﬁ(t)= h[ﬁo(t),ﬁ(t)]—% /0 dt' D {(Vew (&) Viekr ()T [Frre s Ot ) i (E)]

kk! 77!

- (ka' (t,)f}v""" (t)>T[’7rr' ) U(t$ t,)ﬁ(tl)’?kk']}' (10)

In Eq. (10), the quantities Vi (t) = exp(s Hr /k)Virr exp(—iHy k) are the Heisenberg operators, and
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Bt t) - —Texp( ﬁ/ dr[Ho(7),. ]) (11)

is the evolution superoperator of TLS. Here 1" denotes Dyson’s chronological operator.

Note that Eq. (10) was

obtained under the assumption that the TLS and the TB are decoupled at ¢ = 0. Because of assumption (9) the
evaluation of the time-ordered exponent in Eq. (11) becomes a trivial task (the Hamiltonian of the dressed TLS is
diagonal). After some algebra we get from Eqs. (8)—(11) the desired kinetic equation:

6.(t) =

where

F(6,8) = folt — ') cos (’li /t’te(f)df), g(t, )

fo(t) =
G,(t) = 51;-/0 Ju(;:) co

The functions G,(t) and G,(t) in Eq. (13) were intro-
duced by Leggett et al. [6]. One can combine G,(t) and
Go(t) to the complex function G(t) = G4(t) + iGa(t).
Then, G can be transformed in the function

G(t):/otdtl /Otl(ﬁ'(tz)ﬁ(ﬂ))Tdtz-f-i%t. (14)

This expression contains the autocorrelation function of
the generalized force (4)

A A 1 [ cosh(fw/2kpT — iwt)
EOFODr =5 /0 T (R f2kpT)
(15)
and the bath reorganization energy
* J(w)
= _— . 1
Z hw), 2n w dw (16)

It should be stressed here that Eq. (12) includes driv-
ing forces in a nonperturbative manner. A similar kinetic
equation was obtained also in [24], but using a different
method. Virtually, the same kinetic equation can be de-
duced also from the general kinetic equations obtained
in [19,17,20]. The only variation from Eq. (12) is that
the lower limit of the integrals in Eq. (12) is changed
to —oo. Such a replacement reflects the different choice
of the initial decoupling condition between TLS and TB:
the asymptotic decoupling at ¢ — —oo in [19,17,20] and
the initial decoupling at ¢ = 0 in [22]. Which of them is
more appropriate depends on the concrete physical for-
mulation of the problem considered.

If the bias does not depend on time (¢ =const), it can
be easily checked in using the Laplace-transform method
that Eqs. (12) and (13) give for the Laplace transform
of 0, (t) the same result that was obtained within the so-

_ /Ot f(t,t)o.(t)dt'

V2 expl=Ga(t)] cos[Ga(t)], go(t) =

- /tg(t, t')dt', (12)

= go(t —t') sin (% /t'ts(T)dT) ,

:; exp[—G,(t)] sin[Gq (2)],

1 [ J(w) .
1-— = — .
th (Zk T) (1 — coswt)dw, G,(t) 27r/0 o7 sin wtdw (13)

called “noninteracting-blip approximation” in the path-
integral approach [6]. A similar fact was established by
Dekker [25,3] in the case of zero-energy bias, ¢ = 0.
Therefore the kinetic equations (12) and (13) can be
thought of as a generalization of the noninteracting-blip
approximation (NIBA) to the case of time-dependent en-
ergy bias [26]. It can be used in a number of applications,
including both regular and stochastic driving.

III. AVERAGING OVER DICHOTOMOUS
PROCESS

Let us consider the case of a dichotomous driving force.
We can write £(t) = hwo+hAa(t), where fwg is the mean
energy bias and AA denotes the amplitude of the fluctu-
ations. According to the chosen dichotomous Markov
process we have a(t) = 1 with zero mean, (a(t)) = 0,
and with exponentially decaying autocorrelation function
[9-11], (a(t)ex(t')) = exp[—v(t—¢')]. The autocorrelation
time of DMP is 79 = 1/v. In what follows one has to
average Eq. (12) over the different realizations of e(t).
Generally, this is a nontrivial problem; however, in the
case of dichotomous fluctuations it can be solved exactly.
With this goal in mind, we proceed as follows [27]. Let
us rewrite the kernels f(¢,t') and g(¢,¢') in Eq. (12) in
the form

F(t,t) = fo(t — t')Re[e ™o t=t) g(¢ 1)),
(17)
g(t, ') = —go(t — t')Im[e "o t—t) 5 (¢, ¢)],

where S(t,t') is the evolution operator S(¢,t') =

exp[—iA f:, a(T)dT] of the celebrated Kubo oscillator [11]
used in the stochastic theory of optical line shapes [28].
It obeys the stochastic evolution equation
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%S(t, t') = —iAa(t)S(t,t"), S,t')=1. (18)

To average Eq. (12) one has to evaluate the correlator
(S(t,t')o.(t')). Therefore let us consider the formal ex-
pression
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(S, t' + T)at + T)a(t)o.(t)) (T>0). (19)

In Eq. (19) the quantities S(¢,t' +7) and o, (¢') are both
functionals of the DMP «(t) involving only times poste-
rior to t' 4+ 7 and prior to ¢, respectively. Therefore this
expression meets the conditions of the theorem of Bour-
ret, Frisch, and Pouquet (theorem B in [9]). According
to this theorem we get

(S(t,t' + ot + T)a(t)o=(t)) = (S(t,t' + 7)) {a(t' + T)a(t)){o=(t)) + (St + T)a(t' + 7)) (a(t)o=(t)).  (20)

Using the remarkable property of the DMP, o2(t) = 1,
and passing to the limit 7 — +0, we get the following
corollary of theorem (20):

(St )= (t')) = So(t — t'){o=(t"))
+81(t = t')(a(t) o (")), (21)
where So(t — ¢') = (S(t,t')), and Si(t — ') =
(a(t')S(t,t')). In the same way we obtain
(a(t)S(t,t)o(t) = S1(t — t'){o.(t))
+82(t -t (a(t)o=(t),  (22)

where S5(t —t') = (a(t)a(t’)S(t,t')). In Eq. (22) we use
the relations

. id , i d ,
Sit =) = xSt 1) Aot —t),
, 1 42 , 1 a2 ,
—_ = ——— —_— = —_-—— — t—t .
Sa(t =) = Rz gggz S0t — 1) Az dtzs"( )

(23)

In a next step we will evaluate the averaged evolution
operator So(7). Such an averaged quantity as well as the
equation of motion for the correlator {a(t)o(t)), arising
in Egs. (20), (21), can be carried out due to the theorem
of Shapiro and Loginov [29]. It states

d d
G@®20) = —va@0) + (O Fo0)) (20
for any retarded functional ®(t) of the DMP «(t). Ap-

-

plying this theorem to the correlator (a(t)S(t —t')) on
the right side of Eq. (18), and taking into account that
a?(t) = 1, we get from Eq. (18) a closed set of differen-
tial equations for So(¢t —t') and S1(¢ — t'). The solution
of these equations yields

So(1) = exp (—gT) ':cosh <%\/1/2_-4A2T>

+\/2—‘—I/—-—ﬁ.—w X sinh(%\/ l/2 — 4A2’T):' . (25)
v2 —

A similar expression was found earlier in Refs. [11,28].
From Eq. (25) along with Eq. (23) we obtain the follow-
ing expressions for the two remaining correlators:

S (s — 2A v
) == iz o (57)
 sinh (gm) ,
S2(7) = exp (-—g’r) [cosh (%m,,)
v . 1
TV —4Az smh(a \/mﬂ’) . (26)

Finally, applying the theorem (24) to the
correlator (a(t)o(t)) and taking into account Egs. (17),
(21), (22), (25), and (26) one can get from Eq. (12) the
exact closed set of intégro-differential equations for the
expectation value (o, (t)) and the correlator (a(t)o(t)):

2 ouyy = - / {Sa(t — #)fo(t — ) cosfwot ~ )] (0.(¢)
+iS1(t — ') fo(t — ') sinfwo (t — t')[{a(t)o.(t')) + So(t — t')go(t — t') sin[we(t — t')]}dt’,
%(a(t)az(t» = —v(a(t)o:(t)) - /Ot{Sz(t —t') fo(t — t') cosfwo (t — t')[{(t') o= (t))
+iS1(t — t') fo(t — ') sinfwo(t — t')[{o.(t')) +iS1(t — t')go(t — t') cos[we(t — t')]}dt, (27)

with the initial conditions {0,(0)) = 1;(a(0)o.(0)) = 0. Equation (27) along with Egs. (25), (26) is the main result
of our work. This result should be considered as a generalization of the NIBA to the case of dichotomically driven
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energy bias. It has the great advantage of accounting for the dichotomous driven force in an exact manner. Despite
the rather complicated form, Eq. (27) can be useful in various applications. To show this, we restrict ourselves in the
following to the case of zero mean energy bias, wo = 0. In this case, the set of equations (27) breaks down into two
independent equations for the expectation (0, (t)) and the correlator (a(t)o,(t)). As a result, we get

G0 == [ Solt =) falt — )0 (¢) . (28)

Note that this rather nontrivial result appears as a consequence of the fact that the correlator S;(7) has no real
part. It means that the factorization property, (f(t,t')o.(t')) = (f(t,t')){(0.(¢')), holds, in the case considered, for an
arbitrary autocorrelation time 79 of the DMP. A similar result, obtained after a separation of the equations of motion
for (0,(t)) and (a(t)o.(t)), within the spin-boson model extended by a dichotomically fluctuating intersite coupling

[30], does not hold.

For the Laplace transform &,(p) = f0°° exp(—pt)(o.(t))dt we obtain from Eq. (28)

1]z v v? - v V2
&z(P):{P+5l:f0<p+§+ Z——A2>+fo<p+§— Y_Az)]

v

T 2V0? — 4A2 2 4

. v v2
fo (P+—+ —

where fo(p) is the Laplace transform of fo(t).
Consider now the different extremes of Eq. (29). In
the absence of the external driving force (A = 0) we have

1
P+ fo(p)
Equation (30) is nothing else but the well-known result
of the NIBA [6]. Another important example appears in
the white-noise limit (see [9]), where v, A — oo; =

A?/v =const, where 7 is the white-noise intensity. In
this case we get ’

G:(p) = (30)

1

5:(p) = p+ folp+m)

(31)

The case A = v/2 requires special treatment. By passing
to the limit A — »/2 in Eq. (29), we obtain in this case

1
p+ folp+ A) — Afy(p+ A)
[F5(p) = dfo(p)/dp] . (32)

Equations (29)-(32) provide the formal solution of the
problem and describe generally multiexponential dynam-
ics. The dynamics can be coherent or incoherent depend-
ing on the energetic structure of the TB, the strength
of coupling between the TLS and the TB, the tempera-
ture, and the external field parameters. In the incoherent
regime, it can be characterized by the effective relaxation
rate I' = 1/7, where

G:(p) =

r= /0 m(az (t))dt = &.(0) (33)

is the mean first-passage time (the average relaxation
time). Then, Eq. (29), along with Eq. (33), yields

) afees o)) o

=

5 - —Z—AZ)]. (34)

The influence of the external dichotomous driving force
on the incoherent dynamics of a dissipative TLS can be
traced from Eq. (34). To do this it requires a more de-
tailed specification of the physical model for TLS.

IV. DICHOTOMOUSLY DRIVEN LONG-RANGE
ELECTRON TRANSFER

Let us illustrate our theory in considering the bridge
assisted long-range electron transfer (ET) driven by an
external dichotomous field. In this case, the energy levels
E;(t) and E;(t) may correspond to the states of a macro-
molecule well separated in space. The effective electronic
coupling V between the two localized states results from
the superexchange mechanism [31], and the relaxation
rate Eq. (34) coincides with a transfer rate k;.. Besides,
the energy bias e(t) corresponds to the free-energy gap

1]

Consider for simplicity a situation where the mean
value of the free-energy gap is zero, Aiwg = 0, and assume
that the ET is mediated by a single harmonic reaction co-
ordinate coupled to an Ohmic thermal bath. In the case
of the Ohmic thermal bath, this reaction coordinate is
exposed to a frictional force linearly proportional to its
velocity, and can be described by the effective spectral
function [1,32,3,20]
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8k2 YQw

J(w) = B2 (02 — w?)? + 4y2w?

(35)

in Egs. (12), (13). Here  is the reaction coordinate
frequency, k¢ is the coupling constant between the trans-
ferred electron and the reaction coordinate, and + is the
broadening of the reaction coordinate levels due to the
friction. In the strong coupling limit (ko >> AS2) one
can perform the short-time approximation for G,(,(t)
(1] or, which is the same, put (F(¢)F(0))r ~ (F2(0))r
directly in Eq. (13). This procedure yields G(t) ~
E,.kpTesst?/h? + iE,t/h, where E, = x2/hQ is the re-
organization energy of reaction coordinate and T.ss =
K (4nkpE,)~" [ coth(hw/2kpT)J (w)dw is the effective
temperature. The last one is a function of both the bath
temperature and the friction [1]. At high temperatures
we have Tes¢ = T'. In the case of extremely weak friction
(v < wo), one can use kpTess ~ hS2/2coth(AQ/2kpT)
as a first order approximation. Other limiting cases for
Tess along with the detailed discussion can be found
in [1]. Within the numerical calculations we shall re-
strict ourselves to the high-temperature limit. Under
the above mentioned circumstances an approach similar
to the noninteracting-blip approximation is appropriate.
The ET takes place in the single-exponential, nonadia-
batic regime [1], and we get for fo(p) the expression

z 4 &
Fol®) = gl ) (36)
where z = (B, + iip)/2\/E.kgTess, w(z) =

exp(—z?)erfc(—iz) is the error function of a complex
variable, and erfc(z) is the complementary error function
[33]. Equation (36) along with Eq. (34) provide the ex-
pression for the rate constant in the considered case. One
can obtain a simple analytical expression of k;, = I for
the following different extremes of the correlation time g
and the amplitude AA of energy gap fluctuations.

A. Weakly colored noise limit

Let us consider the case of weakly colored fluctuations
when the Kubo number K = A7y of the driving force is
a small one, K < 1 [11]. With the assumption of fast
fluctuations, and Av > (E.kpTess)'/?, we get from Egs.
(34), (36)

_4m V*(1+ K?)

ktr -

E, + ihn ) e

——————Re |w y———————
ﬁ,/41rE,‘kBTeff |: (2 E,.kBTeff

The white-noise limit is obtained from (37) by setting
K = 0. Furthermore, if the noise intensity 7 is small,
hn < E,, and the activation energy E, = E,/4 is not
too large as compared to the kgT.ss, the above equation
reduces to the classical Marcus-Hopfield rate expression
for the zero-energy gap case [34,35]. This rate expression
contains the effective temperature T.ss instead of the
bath temperature

2397
2
kep ~ g__‘_/__e—Er/‘lkBTdf. (38)
h VATE kpTess

We can conclude that the low-intensity noise does not
influence the transfer rate in the case of small activation
energy. Let us consider now the case where (kn)2+E2 >
2E,kpTesys; then we have another extreme,

4Vv? n
A2 n2 + E2/R%’

The dependence (39) has a maximum at n = E,./k. The
numerics show, however, that this maximum appears re-
ally only in the case of a large reorganization energy
(Fig. 1). In the case of extremely intensive noise with
hn > E,, (ErkBTeff)l/z we obtain

ktr = (39)

4v?1
ktr = ‘—h—-z—‘; (40)
independently of the effective temperature and the reor-
ganization energy (Fig. 1). The external noise controls
the electron transfer in this limit completely.
Note that the results of this subsection are valid also
for a weakly colored Gaussian Markovian noise with the
same parameters 79 and A as the DMP.

B. Strongly colored noise limit

Consider now the case of a large Kubo number, K > 1.
In this case we have

2w V2 AA + E, + ihv /2
ki = ————————Re|w
h \/47TErkBTeff 2 E,.kBTeff
— 1
- RA — E, + ihv /2 (41)
2 ErkBTeff

1011
1010

©

transfer rate (1/s)
)

-
o
®

7

10 i

10" 10 10" 10
noise intensity (1/s)

16

FIG. 1. Dependence of the transfer rates k:» on the noise
intensity 7 in the case of weakly colored noise, K < 1,
at different reorganization energies. The set of parameters
T = 300 K, fiwp = 1 x 1072 eV, V = 5 x 107% eV,
E. = 5 x 1072 eV (top curve), E, = 1 x 10~! eV (inter-
mediate curve), and E, = 5x 107! eV (bottom curve) is used
in the calculation.
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10" T 2V? y
\ ke = Tz Az (43)

10° \
- ‘\ Note that the dependence (43) is virtually the same as
= 10 \ that of (40), however, the transfer rate in Eq. (43) is half
2 [N of that in Eq. (40). The difference between the effects
5 . i \\\ of the weakly colored noise (the top curve) and strongly
@ 10 1 >~ colored noise (the bottom curves) on the transfer rate
£ \ is clearly seen from Figs. 2 and 3. One can conclude
10° ™ that the strongly colored DMP is much more effective to
\"\\ control the transfer process than the weakly colored noise
10’ ) ) ) ™ with the same amplitude. It can essentially suppress the
10° 10 10" 10° dissipative tunneling.

amplitude of fluctuations (eV)

FIG. 2. Dependence of the transfer rates k¢, on the am-
plitude of fluctuations AA at different autocorrelation time of
fluctuations in the case of a small activation energy. The set of
parameters T = 300 K, fiwo =1x1072 eV, V =5x10"* eV,
E,=1x10"'eV, 7 = 1072 ps (top curve), 7 = 1 ps (inter-
mediate curve), and 7 = 10® ps (bottom curve) is used in the
calculation.

as the first order approximation. For field-dependent ac-
tivation energies Ef(b) = (AA F E,)%/4E, which are not
too large in relation to kpT.ss we get from Eq. (41) the
result of the quasistatic limit (7o — o0)

27 v?

b= T e
¢ h 47I'E1.kBTeff

[e—Ef/4kBT=ff + G*Eb/‘ikBTeff]_

(42)

However, in the limit of a large amplitude, A > E,., the
dependence of k¢, on the fluctuation field parameters is
quite different (Figs. 2 and 3). In this case we obtain
from Eq. (41)

10

10

transfer rate (1/s)
=)

3

10°* 10" 10°
amplitude of fluctuations (eV)

10°

FIG. 3. Dependence of the transfer rates k;» on the am-
plitude of fluctuations AA at different autocorrelation time of
fluctuations in the case of a large activation energy. The set of
parameters T = 300 K, fuwo = 1 x1072eV,V =5x10"% eV,
E.=5x10""eV, T = 1072 ps (top curve), 7 = 1 ps (inter-
mediate curve), and 7 = 10% ps (bottom curve) is used in the
calculation.

C. The peculiar case, A = v/2

In this case we get from Egs. (32), (33), and (36) the
rate expression

4 \%&
ktr = _7r

h ‘/47rE,.kBTeff

2ViA
BoksTos; {1 — VrIm[zw(2)]},

Re[w(2)]
(44)

where z = (E, +ihA)/24/E.kpTess. Some numerics for
this case are shown in Fig. 4. A comparison with Fig.
1 shows that, despite a principal distinction between the
expression in Eq. (37) and Eq. (44), the behavior of the
transfer rates with respect to the noise intensity A2/v (in
the limit of weakly colored noise) or with respect to the
amplitude of fluctuations A is similar. This fact reflects
the similar nature of the influence of dichotomous noise
on the kinetic processes at the Kubo number K < 1 (the
peculiar case corresponds to K = 1/2).

1

10 r

10

10

transfer rate (1/s)
=)

1071o‘° 107 10"
amplitude of fluctuations (1/s)
FIG. 4. Dependence of the transfer rates k¢, on the ampli-
tude of fluctuations A in the peculiar case, A = v/2, at differ-
ent reorganization energies. The set of parameters T' = 300 K,
Bwo =1x1072eV,V =5x10"% eV, E, = 5x 1072 eV
(top curve), E. = 1 x 107! eV (intermediate curve), and
E,. =5 x 107! eV (bottom curve) is used in the calculation.




52 DYNAMICS OF THE DISSIPATIVE TWO-LEVEL SYSTEM . . .

V. CONCLUSIONS

In conclusion, we outline briefly the main results of
our study. Proceeding from the Argyres and Kelley mas-
ter equation, we have obtained the integro-differential ki-
netic equation (12), (13) for the bath averaged difference
of level populations of a time-dependent dissipative two-
level system. The result was derived within an approach
similar to the noninteracting-blip approximation with an
exact inclusion of the external driving force. The equa-
tion obtained can be used in a large number of applica-
tions which include regular as well as stochastic driving
forces. Furthermore, we arrived at an exact averaging
of this kinetic equation in the case of the driving force
modeled by the telegraph noise.

On the basis of stochastically averaged kinetic equa-
tion, we examined the effects of the fluctuating free-
energy gap on the long-range electron transfer in a simple
illustrative model. An analytical expression depending
on the dichotomous fluctuation parameters was obtained
for the transfer rate constant. It was shown that the ex-
ternal driving field can essentially modify the results of
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time-independent theory. Especially, it was manifested
that the electron transfer rate can be either enhanced or
reduced depending on the amplitude and the autocorre-
lation time of the dichotomous fluctuations, and on the
bath reorganization energy. We found that the transfer
rate is strongly dependent on the Kubo number K of
the fluctuations. The different extremes of K are con-
sidered and corresponding simple analytical expressions
for the transfer rate are obtained. It is deduced that dis-
sipative tunneling can be drastically suppressed by the
large-amplitude fluctuations in the limit of strongly col-
ored noise.
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